A Fixed-Spray System for Spotted Wing Drosophila Management in High Tunnel Raspberries

Arthur Agnello, Andrew Landers, and Greg Loeb
Dept. of Entomology, NYSAES, Cornell University
Geneva, NY

A fixed-spray system for spotted wing drosophila (SWD) provides a cost-effective and time-saving method for spraying insecticides in high tunnel production. SWD has become a significant pest in high tunnels in the Northeastern region, with high tunnel producers facing a need for frequent and consistent insecticide applications to control this pest. A fixed sprayer system, where supply lines are fixed on support wires within or above the canopy, can optimize spray delivery and coverage, reducing the time needed for spraying.

Materials and Methods

The study was conducted in mid-July 2013, with an arrangement of fixed tubing and nozzles installed in each of three high tunnel systems. The system consisted of irrigation-type tubing fitted with greenhouse microsprinklers to deliver pesticide sprays directly to the crop canopy from a centralized pump. The supply lines were fixed on support wires within or above the canopy to optimize spray delivery and coverage.

A fixed system to apply insecticides may help mitigate a number of pest management problems in high tunnel production. Fixed sprayer systems may be particularly cost-effective in high tunnels, as the framework to support the fixed lines is already present. A fixed sprayer system would save time in the application of insecticides compared with using conventional application equipment (e.g., a backpack sprayer). Coverage, and therefore effectiveness, may also be improved with a fixed system.
(HT) systems currently under bramble production in NY: a high tunnel raspberry research planting at the New York State Agricultural Experiment Station in Geneva, a blackberry research planting at the Cornell Horticulture high tunnels in Ithaca, and a high tunnel raspberry operation at Stonewall Hill Farm (Dale Ila Riggs), in Stephentown, NY. For the raspberry systems (Geneva and Stephentown), the main supply lines consisted of 3/4” polyethylene irrigation tubing strung above the planted rows, and affixed to the cross-struts of the HT structure using cable ties, with 1/4” micro-tubing drop lines suspended down to the plant canopy every 5’ along each side of the row (Figures. 3-7). Each drop line was fitted with a Jain DAN 7000 series microsprinkler having an 8-mm orifice and a flat circular pattern spreader (Figure 8); each unit contained a 20-psi check valve. The nozzles were oriented laterally facing toward the row center, producing a spray profile in the vertical plane and directed slightly into the canopy. In the blackberry HT system (Ithaca), the structure was similar, but because of the higher plant density of this crop, the drop lines were suspended every 2.5’ along the sides of the rows, and an additional overhead supply line was used to contact the row center from drop lines spaced every 5’; nozzles on this line were oriented with the spray profile being horizontal over the canopy. All supply lines were connected to a PVC manifold mounted on a board near the HT entrance (Figure 9) fitted with individual pressure gauges and ball valves for each line; the manifold in turn was connected to a portable wheeled greenhouse sprayer (Rear’s Nifty Nursery-Cart model) with a 25-gal tank and a 3-hp gasoline motor powering a diaphragm pump (Figure 10). Each tunnel consisted of three planted rows, ranging from 100–120 ft in length; only a single line was operated at any one time, in order to optimize spray pressure along the extent of the line. To make an application, all lines were first filled by sequentially opening each valve to receive spray solution from the pump
until the line pressure reached 20 psi, or just before the check valves opened. Then, one valve at a time was opened to increase the pressure to 30 psi and spray the pesticide solution from one line, for a total application time of 30 seconds, which thoroughly wet the canopy foliage adjacent to the line of nozzles (Figure 11). The next line’s valve was then opened as the first one was closed, to continue the process similarly until all six lines were allowed to spray; total time for priming plus application therefore required approximately 5 minutes, and took approximately 15 gal for the area sprayed (~0.08 acre). To recover pesticide solution remaining in the tubing after spraying was finished, a length of hose attached to a valve on the PVC manifold was used to drain off as much as possible of the contents of the supply lines into a container; this was used to fill a backpack sprayer for treating check rows in an adjacent HT planting not fitted with the fixed spray system.

During the last week of July, SWD adult traps were deployed adjacent to the HT systems at each site to get an indication of local population pressure near each planting. Traps consisted of plastic deli cups containing a fermented yeast+flour mixture, with apple cider vinegar as a drowning medium (Figure 12). Numbers of SWD adults captured were very low initially and began to increase starting in mid-August (Figure 13); however, to protect the fruit from attack by undetected SWD females, preventive insecticide treatments were also started at the end of July. The two principal products used were Delegate [spinetoram] (3–6 oz/A) and Assail [thiamethoxam] (5 oz/A), to each of which was added 2 lb sugar/100 gal as a feeding stimulant. Sprays were applied weekly, and rotated on the following schedule: Delegate, 29 Jul; 19 & 26 Aug; 16 & 23 Sept; Assail, 5 & 12 Aug; 2 & 9 Sept. At Stephens-town, additional sprays of Mustang Max [zetacypermethrin] were applied during the two weeks following the 23 Sept Delegate spray. All applications were made at dusk to minimize exposure to foraging bees.

To assess efficacy of the insecticide treatments in preventing SWD fruit infestation, samples of maturing fruit were taken weekly beginning the first week of August, and held at room temperature in the lab to rear out any larvae in the fruit to the adult stage. A range of 8–13 samples were taken per site, each consisting of 10–20 berries (~50–100 g total),
Results and Discussion

At Stepentown, a commercial site where ripe fruit was picked nearly daily, generally low numbers of flies emerged from the fruit, with no major difference between the fixed spray and backpack sprayer treatments (Figure 14). In the Geneva and Ithaca HT systems, approximately 2.5 times as many flies were obtained from the fixed spray treatments as from the check plantings. At these sites, the ripening fruit was not harvested as frequently, and the Ithaca blackberry planting was much more vigorous, which resulted in spray coverage not being as thorough.

On 25 Sept, to measure spray deposition from the system in the fully developed canopy, water-sensitive cards were stapled onto the leaves on the outside portion of the row as well as in the inside center of the canopy, both on the leaf tops and undersides, and on the left and right sides of candidate rows. The system was run for 30 seconds with water only, and video imaging software was used to assess average card coverage. Results (Figure 15) show that spray coverage was highly variable, but predictably best on the outside of the canopy, and markedly better on the tops of the leaves (40–100% coverage, above the average seen in orchard field trials) than on the undersides (1–26%). Cards in the inside center of the canopy were less well covered (16–67% on leaf tops, still acceptable levels, but only 1–8% on the undersides).

We are continuing to evaluate this approach for pesticide applications in high tunnels; potential new areas of investigation in forthcoming seasons include:

- Examining shortening the spray duration times, as it is possible the system is running too long and in effect washing off the active ingredient; changes in rates of water and insecticide may affect spray coverage and efficacy.
- Adding center overhead lines in all systems to improve coverage to the insides of the rows.
- Assessing spray coverage on the fruit, by using a fluorescent tracer dye.
- Quantifying pesticide residue levels on the fruit, or conducting bioassays using lab-reared flies to see how efficacy changes over time.
- Looking at cultural practices that might increase coverage (e.g., positioning of canes, cane pruning).
- Examining the possibility of direct pesticide injection (dosing pump) rather than mixing pesticide solutions in the tank.
- Evaluating the use of an air compressor to purge excess spray solution from the system after the pump-driven application is finished, as opposed to manually draining it using an additional tube. These last two modifications should minimize pesticide waste and handling, and increase efficiency of the spray operation.

We believe that the availability of a fixed sprayer system could make growing high tunnel raspberries more feasible in the age of SWD. Fixed sprayer systems may also prove practical for smaller field plantings of high-value blueberries and raspberries. Importantly, the adoption of fixed sprayer systems for berry crops will reduce grower exposure to insecticides, as there will not be a need to travel through the planting to apply them.

Acknowledgments

- Collaborating trial site personnel: Dale Ila Riggs, Laura McDermott, Marvin Pritts, Rich Raba, Courtney Weber
- Technical and engineering assistance: Bill Larzelere, Steve Hesler, Jordi Llorens, Changyuan Zhai, Johanna Elsensohn, Tessa Lessord, Chrissy Dodge, Gabrielle Brind-Amour, McKenzie Schessl, and Allison Wentworth
• Funding support: New York Farm Viability Institute (Dave Grusenmeyer)

Literature Cited

Arthur Agnello is a research and extension professor who leads Cornell's insect control program for tree fruits, **Andrew Landers** is a senior extension specialist who leads Cornell's program in pesticide application technology, and **Greg Loeb** is a research and extension professor who leads Cornell's insect control program for berry crops.