Leaf and Soil Tests on Local Berry Farms:
Lessons from Summer 2010

Molly Shaw
CCE South Central NY Agriculture Team
Cornell University, Owego, NY

This work was supported in part by the NYS Berry Growers Association.

For perennial crops like berries, the standard nutrient management recommendations are to assess their fertilizer needs on a yearly basis with leaf tests, and to use soil tests periodically mainly to check the pH. Leaf tests are considered a more accurate view of what the plant has managed to take in than soil tests. The soil represents the “potential bank” of nutrients that the plant ought to have access to, while the leaf test tells you what it actually managed to get. We’ve found that having both the soil and leaf test side-by-side is necessary to really tease out what’s going on with berry crop nutrients.

This past summer we sampled soils and leaves for nutrients on many of the local berry farms, and the results taught us quite a few lessons.

Reconciling Soil and Leaf Tests
Ideally, the leaf test and the soil test would tell the same story. If the potassium level is low in leaves and also in the soil, simply follow the nutrient recommendations on one of the tests (or average them), and add more potassium in the fertilizer program. Similarly, it’s a simple matter when calcium is low in the leaf test, low in the soil test, and the soil pH is 5.6—add lime according to the soil test and you’ll correct the Ca problem. The complications occur when the soil test and the leaf test seem to be telling a conflicting story.

When Soil Tests Low For a Nutrient, Yet Leaves Test Normal
There are times when the soil test levels of certain nutrients may be “medium” or even “low,” but the leaf test levels of these same nutrients are normal. Normal leaf nutrient levels indicate that the plants are absorbing adequate nutrients, despite the low soil levels.

First make sure that the leaf levels of the macronutrients (N, P, K, Ca, Mg) and boron are all adequate—that one low nutrient isn’t the key holding back the rate of plant growth. “Low” leaf levels of Mn, Cu, and Zn are not so worrisome because we don’t have adequate research to determine what leaf level actually limits plant growth—(keep reading below). If leaf testing shows that the plants have adequate nutrients and the plants are growing well, no need to worry. Perennials fruits, unlike vegetable crops, can store nutrients within the plant and have permanent root systems to scavenge in the soil. Believe the leaf test and don’t add fertilizer that the plant doesn’t need (Fig. 1).

If the plants aren’t growing vigorously but leaf tests show that the plants are getting adequate nutrients, you should look for something besides nutrients that is holding them back—winter injury, root rots, insect infestation, etc. Cyclamen mites on strawberries have been found to be more widespread than previously thought, and are probably taking an invisible toll on strawberries yields at many farms. Plants whose growth is slowed by non-nutrient factors can find low soil nutrient levels adequate for their slow growth rate, while if they were growing faster, perhaps these same levels would not sustain their needs (Fig. 2).

Text Box 1: How to take a leaf sample for nutrient analysis.

Leaf samples are taken during the main growing season and consist of about 50 leaves. For strawberries, sample the first full-sized leaves regrowing after renovation. For blueberries, take leaves in full sun from the middle of this year’s growing shoot during or just after harvest. For raspberries, take the youngest full-sized leaves from primocanes before fruit is formed, in August. If you’ve used any sprays, you should wash the leaves in a dilute detergent solution, then rinse them with distilled water (use distilled so the water itself isn’t adding minerals to the sample). Leaves are then sent to the lab where are dried out and ground up, and analyzed for the nutrient levels they contain. Soil tests can be taken at the same time as leaf tests, or any time the soil isn’t frozen.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Soil Test</th>
<th>Leaf Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>Low</td>
<td>Normal</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>High</td>
<td>Normal</td>
</tr>
<tr>
<td>Potassium</td>
<td>High</td>
<td>Normal</td>
</tr>
<tr>
<td>Calcium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Manganese</td>
<td>25.6</td>
<td>Normal</td>
</tr>
<tr>
<td>Iron</td>
<td>9</td>
<td>Normal</td>
</tr>
<tr>
<td>Copper</td>
<td>0.6</td>
<td>Normal</td>
</tr>
<tr>
<td>Boron</td>
<td>0.0</td>
<td>Normal</td>
</tr>
<tr>
<td>Zinc</td>
<td>5.7</td>
<td>Low</td>
</tr>
<tr>
<td>pH</td>
<td>5.6</td>
<td>Normal</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>2.8</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Figure 1. In these samples of a strawberry field, soil test showed low pH, as well as less than adequate soil Ca and Mg. Not surprisingly, leaf Ca and Mg were also low. This grower will add 1.5 tons/acre of dolomitic lime, according to the soil test.
How can you know if your plants are growing “vigorously”? It is often hard to tell if your plants are smaller than they ought to be until you see a comparison. I learn a tremendous amount by simply visiting many different berry farms and comparing their plant health and their past management practices. As hard as it is in the height of the season, it’s well worth a few hours to check out nearby berry farms.

When Soil Tests High For a Nutrient, Yet Leaf Test Is Low
Other times, the soil test can show adequate nutrient levels while one or more nutrients are low in the leaves. In this case, the puzzle is to determine what is preventing the plant from taking up the nutrient in the soil; adding more soil nutrient is not going to fix the problem.

1. Improper pH can make soil nutrients unavailable to plants. The classic example of low leaf nutrient level when soil tests high for the nutrient is when pH is too high for blueberries. Leaf iron is usually low. Iron-deficient blueberries will show “interveinal chlorosis,” green veins with yellowing between the veins. Blueberries are adapted to a low pH soil (about 4.5), and when pH creeps up two things happen that induce iron deficiency: 1) the higher the pH, the less soil iron is in a chemical form that the plant can use, and 2) within the plant itself, blueberries aren’t very good at managing their iron supplies when calcium and nitrate are abundant as they are at higher pH’s, so higher levels of Ca and NO₃ interfere with blueberries’ use of iron in their leaves. In blueberries, iron deficiency (as shown by the leaf test) is caused by pH being too high, not low iron levels in the soil. The solution is to lower soil pH with sulfur (Fig. 3).

2. Drought can interfere with plant nutrient uptake. We saw this quite a bit in 2010 with calcium and strawberries. We saw several strawberry fields where pH was fine as were soil calcium levels, but leaf calcium was low. Calcium has to be dissolved in the soil solution to move into plant roots, so when water is scarce, the plant roots can’t reach the calcium present in the soil. Same deal with blossom end rot on tomatoes and peppers. In 2010 in central NY we had a dry spell in July, and many times after renovation strawberries got a little neglected on the watering end of things. We saw the same thing with potassium—lack of water was limiting its uptake. The solution is to water after renovation (Fig. 4).

3. Low boron. Boron is important for plant growing tips, including roots. When it’s limiting, roots don’t grow adequately and the plant can’t reach the other nutrients that are present in the soil. In these cases, you can see adequate soil levels of a nutrient while the leaves still test low. Strawberries seem...
particularly sensitive to low boron, and many of NY strawberry fields showed low boron in the leaf tests as well as the soil tests in 2010. In these fields, applying boron according to the leaf test will probably fix the other nutrient deficiencies.

4. **Plants are fruiting.** 2010 was a warm year, and the raspberry season was advanced. We planned to sample fall-bearing raspberries in mid-August before fruit set, but this year fruiting came early, so we ended up sampling individual primocanes that didn’t yet have any berries while other canes on the same plant were beginning to develop fruit. Berries have high K levels, so we saw lower K levels in leaves as they fed the developing fruit. By sampling a little late, when resources were being put to fruit, we got low K levels in leaves while we had adequate K in the soil (Fig. 5).

What About Micronutrients?

Many of our leaf tests show low zinc and low copper. Soil tests report a number for Cu and Zn, but don’t give an interpretation about whether that level is high, medium or low. Marvin Pritts, Cornell Berry specialist, says that research hasn’t been done on berries to definitively determine what levels of Cu and Zn limit yield. That would take a study where micronutrient levels were varied and yield responses measured. The “adequate” levels have been determined by sampling extremely healthy plants, noting their micronutrient levels, and assuming that levels lower that those measured were “low”. Leaf tests tend to recommend micronutrient applications to bring up levels of zinc and copper, but Marvin suspects that it’s not worth the fertilizer investment in most cases. We saw plenty of berry fields in our survey whose leaf tests reported “low” levels of Zn and Cu but which were performing admirably, so at this time we recommend not worrying about reportedly low Zn and Cu levels.

It’s Worth It to Soil and Leaf Test

Each farm’s unique soil/leaf tests provide a different puzzle with different questions to answer. The observations above applied to several farms, and there were other scenarios besides these. Of the 14 local berry farms that did soil/leaf tests this summer, changes in fertilization practices were recommended for 12 of them. A soil test costs about $16, leaf test $24—$40, money well spent considering the value of your berry crop!

Acknowledgements

Many thanks to the NY Berry Growers’ Association for partially funding this project.

Molly Shaw is a multi-county extension educator in southern NY State who specializes in berry crops.
Founded in 1855, the mission of the New York State Horticultural Society is to foster the growth, development and profitability of the fruit industry in New York State.

It accomplishes this by:
• Supporting educational opportunities for members
• Promoting the industry
• Representing the industry in matters of public policy

Contact Us:

NYSHS
630 W. North Street
Hedrick Hall
Geneva, NY 14456
www.NYSHS.org
Ph 315-787-2404 Fx 315-787-2216
wilsonk36@hotmail.com

MEMBERSHIP APPLICATION FORM

Yes! I will support the NYSHS and its mission to Educate, Promote and Protect the New York Fruit Industry

- **Growers**
 - $150
 - $_____
- **Per Each Multiple Membership after 1st**
 - $75
 - $_____
- **Growers w/50 Acres or Less**
 - $75
 - $_____
- **Industry Professional**
 - $150
 - $_____
- **Academic Professional**
 - $75
 - $_____

Sponsors:
- **Bronze level**
 - $500
 - $_____
- **Silver level**
 - $1250
 - $_____
- **Gold level**
 - $2500
 - $_____
- **Platinum**
 - $5000 and up
 - $_____

ADDITIONAL SUPPORT:
Areas you’d like NYSHS to spend more effort on:
- **AgJobs**
 - $100
 - $_____
- **H2A Reform**
 - $75
 - $_____
- **Speaker Programs**
 - $75
 - $_____
- **Your Thought**
 - $_____

TOTAL AMOUNT

$_____

Name______________________________________Company______________________________
Mailing address__
City_________________________________State_______ Zip_____________ County _________
Ph ______________________Fx ____________________ E-mail ____________________________

Please return application form to:
NYSHS, 630 W. North Street, Hedrick Hall, Geneva, NY 14456
If you are already a member, thank you for your continued support!
You may use this form if you wish to consider an additional membership for another person in your organization.

Thank You for Your Support!!

Membership dues are not deductible as charitable for Federal Income Tax purposes.
They may be tax-deductible under other provisions of the IRS Code. Please check with your tax advisor.