C

crop load management is the single most important yet
difficult management strategy that determines the annual
profitability of apple orchards. The number of fruit that
remain on a tree
directly affects
yield, fruit size
and the quality
of fruit that
are harvested,
which largely
determine crop
value. If thinning
is inadequate and
too many fruits
remain on the
tree, fruit size
will be small, fruit
quality will be
poor and flower
bud initiation
for the following
year’s crop may
be either reduced
or eliminated.
Consequently,
poor or inadequate
thinning will
reduce profitability in the current year and result in inadequate
return bloom in the following year. Over thinning also carries
economic perils since yield and crop value the year of application
will be reduced and fruit size will be excessively large with reduced
fruit quality due to reduced flesh firmness, reduced color and a
much-reduced postharvest life. Thus, management of crop load
is a balancing act between reducing crop load (yield) sufficiently
to achieve optimum fruit size and adequate return bloom without
reducing yield excessively (Figure 1).

Economic Impacts of Crop Load

Calculations of crop value at various crop load levels using
fruit size and yield as the main variables has shown in a number of
experiments that the relationship of crop value to crop load is curvilinear (Figure 1). At very high crop loads (unthinned Gala
trees) fruit size is often very small but yield is very high. Crop
value in this situation is almost zero since the value of the fruit
is often exceeded by the packing and storage costs. When crop
load is reduced to more moderate levels through thinning, then
crop value rises dramatically even though yield is lower due to
larger fruit size, which has greater value. At some point crop
value peaks and then with further reductions in crop load crop
value declines due to lower and lower yield. Although fruit size
continues to increase it does not compensate for the loss in yield.
It is striking how narrow the crop value peak is in many situations. Identifying and then achieving this optimum crop value is often
very difficult for apple growers. It is difficult for fruit growers
to know the economic impact of not achieving the optimum
crop load without having various levels of thinning each year to
construct the curves shown in Figure 1. The difference between
the optimum crop load and under thinning or over thinning can
sometimes be a difference of thousands of dollars per acre. Thus
growers often fail to capture the full crop value possible without
knowing how much “money they left on the table”. More precisely
managing crop load will help growers achieve the optimum crop
load and maximize crop value.

Management Approaches to Precisely Managing Crop Load

There are 3 management practices that have a large effect
on crop load: 1) pruning, 2) chemical thinning and 3) hand
thinning. In recent years growers have relied primarily on
chemical thinning to adjust crop load with a lesser reliance on
hand thinning to reduce labor requirements. In other countries
hand thinning is still the primary means of adjusting crop load.

This research was partially supported by the New York Apple Research and Development Program.
Carbohydrates are stored as reserves in the dormant tree but these reserves are depleted by bloom as tree use these to produce energy for pre-bloom growth and respiration. After flower fertilization young fruits require currently produced carbohydrates for continuous development and the extent of this demand appears to be associated with the stage of fruit development and level of light. Immediately after petal fall, demand for carbohydrates by developing fruit is only moderate during the initial lag phase of an expolinear growth pattern. However, when fruit reach 8-10 mm in diameter (about 1-2 weeks after petal fall), rapid fruit growth results in an ever-increasingly large carbohydrate demand which may not be met by current photosynthesis.

At that time in spring, considerable variation in temperature and light gives large variations in carbohydrate balance. Temperature, number of shoots, and number of fruit are important factors that control the demand for carbohydrates. With cool sunny days with a light initial crop, the balance of supply and demand carbohydrates is positive due to the high photosynthesis while the cool temperatures limit demand for carbohydrates by shoots and fruits. On the other hand, hot cloudy days with a heavy initial crop load have a negative balance of carbohydrates due to a reduced supply but the high temperatures drive up demand by stimulating growth rates of shoots and fruits.

Chemical thinning is reputed to work by providing a transient stress on the tree during the rapid growth stage of shoots and fruits and when fruits are most susceptible to a carbohydrate deficit. Chemical thinners appear to have the capability to create a carbohydrate stress by reducing photosynthesis, increasing respiration or impeding carbohydrate movement to the fruit. Many have observed that the greatest fruit abscission caused by thinners is associated with periods of 3-5 days of reduced carbohydrate availability immediately following thinner application. These weather conditions are generally a combination of warm temperatures and low light. Unfortunately, these are empirical observations that have not been quantified to aid in prediction of thinner response or used to make thinner recommendations.

Chemical Thinning

For the past 50 years chemical thinning has been the primary method growers have used to achieve the proper crop load and consistent annual cropping but despite over 50 years of experience with chemical thinning, it remains an unpredictable part of apple production with large variations from year to year and within years due to weather.

The interactions of environment with thinning have been observed for many years. Beginning in 2000, we began to study this variability by conducting annual spray timing trials in NY State, which showed extreme variation in timing of response and thinning efficacy between years over the 3-week period after bloom when chemical thinners are applied (Robinson and Lakso, 2004; Lakso et al. 2006).

There are two major sources of this variability: spray chemical uptake and environmental effects on tree physiology. Variability in spray uptake includes the chemical thinner concentration, the environment at the time of application (temperature and humidity), application method and coverage, drying conditions, and leaf epicuticular wax. However, generally temperature and humidity largely compensate for one another in affecting drying time and uptake.

A second and more important source of variation is the sensitivity of the tree itself, which is related to the level of bloom, how many fruits are present at the time of application, leaf area, temperatures, sunlight, and tree vigor. Many of these factors are directly related to the balance of carbohydrate supply from tree photosynthesis in relation to the demand for carbohydrates from all of the competing organs of the tree (crop, shoots, roots, and woody structure).

Carbohydrates and Fruit Growth

Considerable research has examined the role of carbohydrates as pivotal to the fate of young developing apple fruit. Carbohydrates are stored as reserves in the dormant tree but these reserves are depleted by bloom as tree use these to produce energy for pre-bloom growth and respiration.

After flower fertilization young fruits require currently produced carbohydrates for continuous development and the extent of this demand appears to be associated with the stage of fruit development and level of light. Immediately after petal fall, demand for carbohydrates by developing fruit is only moderate during the initial lag phase of an expolinear growth pattern. However, when fruit reach 8-10 mm in diameter (about 1-2 weeks after petal fall), rapid fruit growth results in an ever-increasingly large carbohydrate demand which may not be met by current photosynthesis.

At that time in spring, considerable variation in temperature and light gives large variations in carbohydrate balance. Temperature, number of shoots, and number of fruit are important factors that control the demand for carbohydrates. With cool sunny days with a light initial crop, the balance of supply and demand carbohydrates is positive due to the high photosynthesis while the cool temperatures limit demand for carbohydrates by shoots and fruits. On the other hand, hot cloudy days with a heavy initial crop load have a negative balance of carbohydrates due to a reduced supply but the high temperatures drive up demand by stimulating growth rates of shoots and fruits.

Chemical thinners are reputed to work by providing a transient stress on the tree during the rapid growth stage of shoots and fruits and when fruits are most susceptible to a carbohydrate deficit. Chemical thinners appear to have the capability to create a carbohydrate stress by reducing photosynthesis, increasing respiration or impeding carbohydrate movement to the fruit. Many have observed that the greatest fruit abscission caused by thinners is associated with periods of 3-5 days of reduced carbohydrate availability immediately following thinner application. These weather conditions are generally a combination of warm temperatures and low light. Unfortunately, these are empirical observations that have not been quantified to aid in prediction of thinner response or used to make thinner recommendations.

Apple Tree Carbohydrate Balance Model

Alan Lakso at Cornell University has developed a simplified mathematical model that mechanistically estimates apple tree photosynthesis, respiration and growth of fruits, leaves, roots and woody structure (Lakso et al., 2006, 2007). The model uses daily maximum and minimum temperatures and sunlight to calculate the production of carbohydrates each day and allocates the available carbohydrates to the organs of the tree. From these data the model calculates the daily balance of carbohydrates for a virtual tree based on an Empire/M.9 tree grown in Geneva, NY.

Although 50 years of experience with chemical thinning has taught us what to expect with extreme weather conditions, the model is especially valuable in estimating carbohydrate balance in less obvious conditions such as cool and cloudy compared to hot and sunny and gives a quantitative value under all conditions.

The value of the model in predicting chemical thinner efficacy has been studied since 2000 in both field and greenhouse thinning studies at Cornell University. In each year we identified periods during the 2-3 week thinning window where the model estimated either a carbohydrate surplus or a deficit and compared them to our observed thinning responses from the spray timing studies mentioned earlier (Lakso et al., 2007; Robinson and Lakso, 2011). For example, in 2004 a very warm, cloudy period occurred shortly after bloom resulted in a net carbohydrate deficit during the first 10-14 days after petal fall followed by a sunny cool period of particularly good carbohydrate balance. The poor carbohydrate balance period correlated well with the strongest thinning response while the least thinning response later during the good carbohydrate balance. In 2006, however, the carbohydrate balance was good initially after bloom corresponding to light-moderate thinning. The hot period beginning at about 21 days after bloom led to a poor carbohydrate balance that correlated with the strongest thinning effect. Other years showed similar correlations that explained many of the year-to-year variations shown earlier (Figure 2). We have used the calculated thinning efficacy of the tree to predict or explain thinning response as follows:
You can rely on Farm Credit East for record-keeping and reporting.

Sound financial management begins with reliable, real-time records and financial reports that enable you to identify key issues. Whether you’re a small family business or a large operation with diverse markets, Farm Credit East can help.

For more information, watch our video on record-keeping services at youtube.com/FarmCreditEast.

Farm Credit East
800.562.2235
FarmCreditEast.com
carbohydrate surplus will support fruit growth giving less thinning while carbohydrate deficits will limit fruit growth giving more thinning.

In 2008 we conducted a greenhouse study using potted apple trees where we imposed one of 3 temperature regimes (15/7.5°C; 22/15°C; 29/22.5°C with 30-35% of outside light) for a 5-day period immediately after thinner application of Naphthaleneacetic acid (NAA)+Carbaryl or Benzyladenine(BA)+Carbaryl) (Yoon et al., 2010). The combined effects of the reduced light and temperature of the glasshouse were calculated as carbohydrate balance using the model. The 5-day average carbohydrate balance affected by temperatures and light was well correlated with fruit set in a strongly positive manner. At all levels of deficit there was a strong added thinner effect with little difference between NAA+Carbaryl and BA+Carbaryl. Only when the carbohydrate balance showed no deficit did the chemicals thin moderately.

We have used these results to develop simple decision rules based on carbohydrate balance for the day of thinning and the next 3 days (Table 1).

The carbohydrate model has potential to predict thinner responses prior to the application of thinners thus allowing growers to adjust thinner treatment and timing to achieve an optimal amount of thinning. However, it imprecisely assesses the real effect of the chemical thinner after application. A more precise assessment tool after application would be of value to growers in deciding whether to apply a second application of chemical thinner.

Apple Fruit Growth Rate Model

A precise method of early assessment of thinning efficacy after chemical application based on fruit growth rate has been developed by Duane Greene, and others (Greene et al., 2013). The model is based on the observation that fruitlets which have slowed growth rates (less than 50% of the fastest growth rates) are usually destined to abscise. The model requires the measurement of the diameter of fruitlets on 75 spurs (375 fruitlets) at 3 and 8 days after application of the chemical thinner to clearly differentiate abscising versus retained fruit. The growth rate of the fastest-growing fruitlets is used as reference to determine the percentage growth of fruitlets and what percent will abscise.

Early estimates of thinning efficacy after application allow timely decisions about the need for a second chemical application if needed.

In 2008 the fruit growth model was evaluated at NC and NY with several varieties. Thinning response to the thinner and final fruit set in NC was accurately predicted. In NY, initial fruit abscission response to the thinner was accurately predicted although a later cloudy period caused additional drop. As with the carbohydrate model this model needs additional validation in other climates, especially in arid climates.

Precision Chemical Thinning

In the last 3 years we have developed an improved method of conducting chemical thinning that utilizes both the carbohydrate model and the fruit growth model. We have named the method "Precision Chemical Thinning". This method uses the carbon balance model as a predictive tool for predicting response prior to application and the fruit growth rate model for early assessment of thinning response immediately following application.

The method begins with first calculating the final fruit number (target fruit number) needed per tree (based on desired yield) and secondly assessing the number of flower clusters on the trees (after pruning) by counting 5 representative trees. Once the number of flower clusters/tree is known (each cluster with 5 flowers) and the final fruit number needed for the desired yield the percent of the initial flowers needed after thinning can be calculated. The optimum final fruit number per tree is different for each variety and depends on genetic fruit size of the variety (Gala is small genetically and Jonagold is large genetically) and the price in the market (large Gala’s have a much higher price than small Gala’s while Jonagold’s that are too big have a lower market price) and the inherent bienniality of the variety (Honeycrisp are very biennial and must be managed at a lower crop load than Gala which is not biennial). An example of calculating the optimum fruit number per tree is given for Gala.

Calculation of Desired Fruit Number (Gala Tall Spindle Example)

1. Determine desired yield/acre (in this example I chose 1500 bu/acre) and desired fruit size (in this example I chose 100 count fruit size ~175-180g)
2. Calculate the desired number of fruits per acre (1500bu/acre X 100 fruits/bu=150,000 fruits/acre

Table 1. Decision rules for using the output of the carbohydrate model to adjust chemical thinning rates.

<table>
<thead>
<tr>
<th>4-day Av. Carb. Balance</th>
<th>Thinning Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20g/day to +80g/day</td>
<td>Increase Chemical Thinning Rate by 30%</td>
</tr>
<tr>
<td>+20g/day to 0g/day</td>
<td>Increase Chemical Thinning Rate by 15%</td>
</tr>
<tr>
<td>0g/day to -20g/day</td>
<td>Apply Standard Chemical Thinning Rate</td>
</tr>
<tr>
<td>-20g/day to -40g/day</td>
<td>Decrease Chemical Thinning Rate by 15%</td>
</tr>
<tr>
<td>-40g/day to -60 g/day</td>
<td>Decrease Chemical Thinning Rate by 30%</td>
</tr>
<tr>
<td>-60g/day to -80 g/day</td>
<td>Decrease Chemical Thinning Rate by 50%</td>
</tr>
<tr>
<td>< than -80g/day</td>
<td>Do not thin (many fruits will fall off naturally)</td>
</tr>
</tbody>
</table>

Figure 2. Flow chart of precision thinning program to achieve a target crop load
Triumph over worms in grapes, tree nuts, stone fruit and pome fruit with powerful, flexible Belt® insecticide. Belt is your first line of defense against worms. It’s long-lasting, soft on beneficials, and is a key part of a winning Integrated Pest Management program, which means fewer sprays. When it comes to worms, Belt goes above and beyond. Kind of like you.

BeltInsecticide.us

Bayer CropScience LP, 2 T.W. Alexander Drive, Research Triangle Park, NC 27709. Always read and follow label instructions. Bayer, the Bayer Cross and Belt are registered trademarks of Bayer. Belt is not registered in all states and is a Restricted Use Pesticide in New York state. For additional product information call toll-free 1-866-99-BAYER (1-866-992-2937) or visit our website at www.BayerCropScience.us

CR0213BELTTTA051V02R0
3. Calculate the desired number of fruits per tree ((150,000 fruits per acre / 1210 trees/acre = 124 fruits/tree)
4. Count flowering spurs on 5 representative trees at pink. (In this example I counted flower clusters on 5 trees, which had an average of 200 flowering cluster/tree
5. Calculate the number of potential fruits per tree (200 flowering spurs x 5 flowers per spur = 1,000 potential fruits/tree)
6. Calculate percent of fruits needed after thinning which equals the thinning task (124 desired fruits per tree/1000 potential fruits per tree = 12.4%)

With the variety specific target of final fruit number per tree and the thinning task in mind a precision thinning program is conducted by applying sequential thinning sprays followed by rapid assessment of the results in time to apply a subsequent thinning spray and then an early re-assessment, followed by another spray if needed until the final target fruit number for each variety is achieved.

In practice precision thinning begins with:
1. A bloom thinning spray at 60-80% full bloom.
2. The first spray is followed by a petal fall spray applied 2-4 days after petal fall (about 1 week after the bloom spray) when fruits are 5-6mm in diameter. Before the petal fall spray the results of the carbohydrate model are used to guide the rate of chemical and the exact timing of the petal fall spray.
3. The first two sprays are followed by an assessment of the efficacy of those 2 sprays using the fruit growth rate model which indicates the percentage of thinning achieved with the first 2 sprays.
4. Then, if needed, a third spray is applied at 10-13mm fruit diameter (about 1 week after the petal fall spray). Before the petal fall spray the results of the carbohydrate model are used to guide the rate of chemical and the exact timing of the third spray.
5. The third spray is followed by an assessment of the effectiveness of all previous sprays using the fruit growth rate model, which indicates the percentage of thinning achieved with all 3 previous sprays.
6. Lastly, if still more thinning is needed, a fourth spray is applied at 16-20mm (about 1 week after the third spray) to achieve the target fruit number.

Figure 5? shows a decision making tree we envision being
6. Lastly, if still more thinning is needed, a fourth spray is applied at 60-80% full bloom.

Precision Thinning in NY, MA, VT and NJ States in 2013

The precision thinning program was implemented in 2013 with growers, consultants and extension field staff in NY, MA, VT, and NJ. In 2013 we placed the apple carbohydrate thinning model on a web server at Cornell University, which is available over the Internet at the NEWA site (http://www.newa.cornell.edu). It is linked to on-farm weather stations in NY, MA, VT, NJ and eastern PA from which the model uses temperature and sunlight data beginning each year with the date of bud-break in the spring to daily calculate tree carbohydrate balance. The web version of the carbohydrate model also uses weather forecasts for prediction of carbohydrate balance 7 days into the future. The web site allows apple growers or consultants to run the model and receive predictions in real time of carbohydrate balance and suggested chemical thinner doses.

The fruit growth rate model is used to rapidly assess the effect of each chemical thinning spray. It requires growers to tag 15 representative spurs of 5 representative trees and then measure their diameter 3 and 8 days after each chemical thinning sprays. From these measurements fruit growth rate of each measured fruits is determined and those that are growing slow are predicted to fall off. From these data a percentage of the total fruitlets on the tree expected to fall off from the thinning spray is calculated. The fruit growth measurements require laborious and time consuming fruit tagging and fruit diameter measurements. This aspect will discourage some growers from using this valuable tool. However, the economic impact of optimum crop load adjustment can be worth $5,000-10,000 per acre. Thus a labor intense assessment of fruit thinning is justified and is much less expensive than hand thinning or the losses incurred by over thinning.

For many fruit growers, it may be impractical to use the fruit growth rate model on all varieties since more than 20 varieties are grown in NY State. We suggest growers make the fruit diameter measurements on 3 varieties (2 hard to thin varieties and an easy to thin variety) to guide the decisions for other varieties. We suggest growers measure fruit diameters with Gala, McIntosh and Honeycrisp in the Northeast.

In 2013 more than 20 cooperating growers, consultants and extension staff implemented the precision thinning program on Gala and Honeycrisp in NY, MA, VT and NJ. The results of fruit diameter measurements made after petal fall thinning sprays around May 19th or 20th show that the sprays provided significant thinning on Gala and Honeycrisp but that additional thinning was

<table>
<thead>
<tr>
<th>Cultivar/Farm</th>
<th>Initial number of clusters/fruitlets per tree (averaged from 5 trees)</th>
<th>Current number of clusters/fruitlets after bloom and/or petal fall spray(s) as May 28, 2013</th>
<th>Current set (% fruitlets/tree) after thinning</th>
<th>Target fruit number per tree spray(s)</th>
<th>Chemical thinning recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gala Farm 1</td>
<td>146 initial clusters (or 729 initial fruitlets)</td>
<td>224 fruitlets</td>
<td>30.7%</td>
<td>111 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Honeycrisp Farm 1</td>
<td>210 clusters (or 1050 fruitlets)</td>
<td>414 fruitlets</td>
<td>39.4%</td>
<td>61 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Gala Farm 2</td>
<td>235 clusters (or 1175 fruitlets)</td>
<td>328 fruitlets</td>
<td>32.5%</td>
<td>135 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Gala Farm 3</td>
<td>488 clusters (or 2440 fruitlets)</td>
<td>748 fruitlets</td>
<td>30.6%</td>
<td>231 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Honeycrisp Farm 4</td>
<td>225 clusters (or 1125 fruitlets)</td>
<td>321 fruitlets</td>
<td>28.6%</td>
<td>65 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Gala Farm 4</td>
<td>470 clusters (or 2350 fruitlets)</td>
<td>578 fruitlets</td>
<td>24.6%</td>
<td>135 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Gala Farm 5</td>
<td>200 clusters (or 1000 fruitlets)</td>
<td>375 fruitlets</td>
<td>37.5%</td>
<td>80 fruits</td>
<td>Spray again</td>
</tr>
<tr>
<td>Honeycrisp Farm 5</td>
<td>200 clusters (or 1000 fruitlets)</td>
<td>213 fruitlets</td>
<td>21.3%</td>
<td>60 fruits</td>
<td>Spray again</td>
</tr>
</tbody>
</table>
still needed. In general fruit set was reduced by about 70% from the bloom and petal fall sprays (Table 2), however the target was to reduce fruit set by 90%. Thus substantial thinning on Gala and Honeycrisp remained to be done. This suggested another spray in these block at the 10-12mm fruit size stage. From this assessment we gave specific recommendations to each grower for another spray. A similar process was repeated after the 10-12mm spray to determine if another final spray was needed at 18-20mm fruit size stage.

Conclusions

The new precision thinning program for managing apple crop load allows growers to first determine a target fruit number and the initial fruit number per tree and then apply sequential thinning sprays beginning at bloom to reduce fruit number per tree in a step wise manner down to the target fruit number. The program utilizes the Cornell Apple Carbohydrate Thinning model and the Fruit Growth Rate model to provide real time information to growers of the progress in this step wise thinning process. The program gives growers confidence to thin when appropriate and sound information about when not to thin. The economic implications of optimum crop load and optimum fruit size are large and justify this more intensive management approach required by the Precision Thinning program.

Lastly, precision thinning will be more easily applied to the simple trees in high-density orchards such as the Tall Spindle or Super Spindle where counting of whole trees is easier than large trees.

Acknowledgements

This research was partially supported by the New York Apple Research and Development Program, NY Farm Viability Center and the NY State Specialty Crops Block Grant Program. We thank Jim Myers, Keith Eggleston and Art DeGaetano for support in developing the web version of the carbohydrate thinning model. We also thank the growers, consultants and extension educators who worked with us over several years to develop the precision thinning program.

Literature Cited

